1.

Combining Yelp and Zomato Data
Lokananda Dhage, Mary Feng, Varun Naik
CS 838 Project Stage 4

Combining Yelp and Zomato Data

a.

b.

C.

Re-doing Stage 3 for Yelp and Zomato Datasets (match_magellan.py)

Since we performed entity matching on songs and tracks in the previous stage,
for this stage, we performed entity matching on the restaurant datasets as well;
essentially, we redid stage 3 for the restaurant datasets. Since our datasets were
in json (yelp_restaurants.json and zomato_restaurants.json), we first converted
from json to csv. This is done in jsontocsv.py, producing yelp_restaurants.csv
(1403 tuples) and zomato_restaurants.csv (1759 tuples). Then, entity matching
was done using Magellan in match_magellan.py, in a similar process as before.
We added a column to yelp restaurants.csv and zomato restaurants.csv to
generate A.csv and B.csv, respectively. We performed blocking to generate
candidate C (3211 tuples). We sampled from C to create training set | (350
tuples) and testing set J (150 tuples). Based on the training and testing process,
the best matcher was logistic regression. During training, using 10 fold cross
validation, precision was 0.980000, recall was 0.990909, and F1 was 0.986561.
Logistic regression was also the best matcher on the test set, with precision of
100%, recall of 97.62%, and F1 of 98.8%.

Applying Logistic Regression Matcher to C (the set of candidate tuple pairs
obtained after blocking on A and B) (merge_tables.py)

Using the trained best matcher, logistic regression, matching was performed on
C. The result is the set of all matches between A and B, Yelp and Zomato,
respectively. Since the result is in the form of feature vectors, the result is
merged with the original csv files to obtain the meaningful result. This is done in
merge_tables.py, which produces matches.csv (938 tuples). We inspected
matches.csv. manually and removed false matches to create
matches_cleaned.csv (911 tuples).

Merging Yelp and Zomato to Obtain Table E (merge_tables.py)
i. Dropping Repetitive or Unnecessary Columns
The result from the previous step, matches cleaned.csv, contains 50
columns (16 columns from Yelp, 32 columns from Zomato, and 2
repetitive id columns for Yelp and Zomato). Some cleanup was
performed. Repetitive columns were dropped: “ltable _business _id” is
equivalent to “business_id” (from Yelp), “rtable_id” is equivalent to “id”
(from Zomato). These repetitive columns were dropped and renamed to
“yelp_id” and “zomato_id” for clarity. Additionally, the “locality_verbose”
attribute was simply the value of the “locality” attribute + “Madison” so that

was repetitive. Finally, when doing the conversion from json to csv, the
“location” attribute was extracted to separate columns, so that was also
repetitive. Many columns were also dropped because they were
unnecessary or did not offer helpful insight. Several columns had the
same value for all tuples: “state” was all “WI”, “type” was all “business”,
‘R” was same as zomato id, “switch to order menu” was all O,
“currency” was all $, “offers” was all [], “has_online_delivery” was all 0,
“is_delivering_now” was all 0, “has_table _booking” was all 0,
“‘establishment_types” was all [], “city_y” was all Madison, “city_id” was all
the same, and “country_id” was all the same. Other columns were not

deemed helpful for analysis and thus dropped: “apikey”, “url”, “thumb”,
“‘photos_url”, “menu_url”, “featured_image”, “deeplink”, and “events_url”.
Zomato: Extracting Shorter Addresses from Full Addresses

Yelp addresses were not full addresses; they contained street number,
but not city, state, or zipcode. Zomato addresses were full addresses,
containing street number, city, state, and zipcode. This was repetitive.
Therefore, the first part of the address was extracted from the full
address. For instance, if the address was something like “123 Main
Street, Madison, WI 53715”, then the extracted shorter address would be
“123 Main Street’. This was some pre-processing done to help resolve
between Yelp and Zomato addresses in a later step.

Selecting Yelp over Zomato for City and Zipcode

The “city_x” attribute from Yelp was similar to the “locality” attribute from
Zomato. Zomato’s “locality” split the city of Madison into “Downtown
Isthmus”, “West Side”, and “East Side”, while Yelp simply had “Madison”.
We decided to take Yelp’s “city x” attribute (renamed to “city”) over
Zomato’s “locality”, so “locality” was dropped. Similarly, since Zomato had
9 tuples with missing zipcodes, we decided to drop the “zipcode” attribute
from Zomato and take the “postal_code” attribute from Yelp, which was
renamed “zipcode”.

The other possible candidate columns we considered for merging was
stars(Yelp) and user_ratings(Zomato). However since we believe these
these ratings give different information depending on the Yelp and
Zomato users, we didn’t merge these columns as there is no one correct
and acceptable way of merging the user ratings from two sources.

The procedure to merge the Yelp and Zomato datasets are summarized below.

Column of table
E

Original
Columns (Yelp,
Zomato)

Merging logic and rationale

name

name_Xx,
name_y

The values in the resulting column (Name) was
populated with the value from either the values in
the columns name_x or name_y depending on
whichever had more characters i.e greater the
length of the string, we assumed it to be the more
complete and accurate value. There were no case
of missing values encountered.

address

address_x,
address_y

Some pre-processing was done on the Zomato
addresses to extract a shorter address from the
original full addresses, as described previously.
Similarly to name, the longer address was selected,
as it would contain more information. For example,
Yelp’s address may be “123 Main Street”, while
Yelp’s may be “123 Main Street Suite 100", which is
more informative.

latitude

latitude_x
latitude_y

As there was no way to determine the accuracy of
the latitude values from either of the two columns.
Hence, the values in the resulting column (Latitude)
was populated with the average of the values of the
two Latitude columns.

longitude

longitude_x
longitude_y

As there was no way to determine the accuracy of
the longitude values from either of the two columns.
Hence, the values in the resulting column
(Longitude) was populated with the average of the
values of the two Longitude columns.

city

city_x, locality

The “city_x” attribute from Yelp was similar to the
“locality” attribute from Zomato. Zomato’s “locality”
split the city of Madison into “Downtown Isthmus”,
“West Side”, and “East Side”, while Yelp simply had
“Madison”. We decided to take Yelp’s “city_x”
attribute (renamed to “city”) over Zomato’s “locality”,
so “locality” was dropped.

Zipcode

postal_code,
zipcode

Since the zipcode column from Zomato contained 9
tuples with missing values, we decided to drop
Zomato’s postal_code. We retained the
postal_code column from Yelp and renamed it as
Zipcode.

2. Statistics on Table E (E.csv)

The schema for Table E contains 19 columns: yelp_id, zomato_id, neighborhood, city,
zipcode, stars, review_count, is_open, attributes, categories, hours, cuisines,
average_cost_for_two, price_range, user_rating, name, address, latitude, and longitude.
There are 911 tuples in table E, which is E.csv. Here are five sample tuples from table E:

1)

RJNAeNA-209sctUO0dmwuA,17502451,Capitol,Madison,53703.0,4.0,1236,1,"[u’
Alcohol: full_bar', u"™Ambience: {romantic': False, 'intimate': False, 'classy"
False, 'hipster': False, 'divey": False, 'touristy: False, 'trendy": False, 'upscale”:
False, 'casual: True}", u'BikeParking: True', u'BusinessAcceptsCreditCards:
True', u""BusinessParking: {'garage": False, 'street': True, 'validated': False, 'lot":
False, 'valet': False}"", u'Caters: False', u'GoodForKids: True', u"™GoodForMeal:
{'dessert: False, 'latenight': False, 'lunch': True, 'dinner": True, 'breakfast’: False,
'‘brunch’: False}"", u'HasTV: True', u'NoiseLevel: loud', u'OutdoorSeating: True',

u'RestaurantsAttire: casual’, u'RestaurantsCounterService: True',
u'RestaurantsDelivery: False', u'RestaurantsGoodForGroups: True',
u'RestaurantsPriceRange2: 2, u'RestaurantsReservations: False',
u'RestaurantsTableService: True', u'RestaurantsTakeOut: True',

u'WheelchairAccessible: False', u'WiFi: free']","[u'American (Traditional)',
u'Restaurants’, u'German’, u'American (New)', u'Steakhouses', u'Bars',
u'Breakfast & Brunch', u'Salad’, u'Nightlife']","[u'Monday 7:30-22:30', u'Tuesday
7:30-0:0', u'Wednesday 7:30-1:0', u'Thursday 7:30-1:0", u'Friday 7:30-1:30',
u'Saturday 9:0-1:30', u'Sunday 9:0-22:30'","American, Breakfast,
Burger",25,2,"OrderedDict([(u'aggregate_rating', u'4.8", (u'rating_text',
u'Excellent'), (u'rating_color', u'3F7EQ00"), (u'votes', u'1610"])",The Old
Fashioned,23 N Pinckney St,43.0762316238,-89.3836456086

6zZDTZ4ZZEYfN268iPz0uQ,17503679,Capitol,Madison,53703.0,4.5,38,1,"[u'Alc

ohol: full_bar', u'CoatCheck: True', u'NoiselLevel: loud',
u'RestaurantsPriceRange2: 3, u'RestaurantsTableService: True',
u'RestaurantsTakeOut: True', u'BusinessAcceptsCreditCards: True',
u'GoodForKids: False', u'RestaurantsGoodForGroups: True',

u'RestaurantsReservations: True', u"Ambience: {romantic’: False, 'intimate"
False, 'classy" False, 'hipster: False, 'divey": False, 'touristy': False, 'trendy":
False, 'upscale': False, 'casual: False}"™, u'RestaurantsDelivery: False',
u'BikeParking: True', u""BusinessParking: {'garage": False, 'street: False,
'validated: False, 'lot: False, 'valet': False}", u'GoodForDancing: False',
u""GoodForMeal: {'dessert': False, 'latenight': False, 'lunch': False, 'dinner": False,
'‘breakfast’: False, 'brunch': False}", u'HappyHour: True', u""Music: {'dj': False,
'‘background_music': True, 'no_music: False, 'karaoke": False, 'live": False,
'video": False, 'jukebox': False}", u'OutdoorSeating: False', u'Smoking: no',

u'HasTV: False', u'RestaurantsAttire: dressy']","[u'Bars', u'Sushi Bars',
u'Restaurants’, u'Nightlife', u'Lounges']","[u'Monday 11:30-14:30', u'Monday

16:30-22:0', u'Tuesday 11:30-14:30', u'Tuesday 16:30-22:0', u'Wednesday
11:30-14:30", u'Wednesday 16:30-22:0', u'Thursday 11:30-14:30', u'Thursday
16:30-22:0', u'Friday 16:30-22:0', u'Saturday 16:30-22:0', u'Sunday
16:30-22:0"","Asian, Japanese, Sushi",25,2,"OrderedDict([(u'aggregate_rating',
u'4.2"), (u'rating text', u'Very Good'), (u'rating_color', u'5BA829'), (u'votes'
u'209')])",Red,"316 West Washington Ave, Ste 100",43.0738205,-89.384915

OETtpZSd6f7q_-o-7gutPg,17503369,Capitol,Madison,53703.0,4.5,264,1,"[u'Alco
hol: beer_and_wine', u""Ambience: {romantic". False, 'intimate": False, 'classy"
False, 'hipster':. True, 'divey': False, 'touristy': False, 'trendy': False, 'upscale'
False, 'casual: False}", u'BikeParking: True', u'BusinessAcceptsCreditCards:
True', u""BusinessParking: {'garage'. False, 'street’: True, 'validated': False, 'lot"
False, 'valet: False}", u'ByAppointmentOnly: False', u'Caters: False',
u'GoodForKids: True', u"GoodForMeal: {'dessert: False, 'latenight: False,
'lunch”: False, 'dinner": False, 'breakfast: True, 'brunch": True}"", u'HasTV: False’',
u'NoiselLevel: average', u'OutdoorSeating: True', u'RestaurantsAttire: casual’,

u'RestaurantsDelivery: False', u'RestaurantsGoodForGroups: False',
u'RestaurantsPriceRange2: 1, u'RestaurantsReservations: False',
u'RestaurantsTableService: False', u'RestaurantsTakeOut: True',

u'WheelchairAccessible: True', u'WiFi: free']","[u'Coffee & Tea', u'Restaurants’,
u'Creperies', U'Food]","[u'Monday 6:30-18:30', u'Tuesday 6:30-18:30',
u'Wednesday 6:30-18:30", u'Thursday 6:30-18:30', u'Friday 6:30-18:30',
u'Saturday 6:30-18:30', u'Sunday 6:30-18:30"","Breakfast, Coffee and
Tea",10,1,"OrderedDict([(u'aggregate_rating’, u'3.8"), (u'rating_text, u'Good'),
(u'rating_color', u'9ACD32'), (u'votes', u'114"])",Bradbury's,127 N Hamilton
St.,43.0769705,-89.3838785

kz5UANVmMPxplicoLnZBNhg,17503613,McClellan
Park,Madison,53718.0,3.5,88,1,"[u'Alcohol: full_bar', u"Ambience: {romantic"
False, 'intimate": False, 'classy": False, 'hipster: False, 'divey": False, 'touristy":
False, 'trendy': False, 'upscale': False, 'casual: True}", u"'BestNights: {{monday":
False, 'tuesday': False, 'friday": True, 'wednesday': False, 'thursday' False,
'sunday" True, 'saturday": True}™, u'BikeParking: True',
u'BusinessAcceptsBitcoin: False', u'BusinessAcceptsCreditCards: True',
u""BusinessParking: {'garage’: False, 'street: False, 'validated': False, 'lot": True,
'valet: False}", u'Caters: True', u'CoatCheck: False', u'DogsAllowed: False',
u'GoodForDancing: False', u'GoodForKids: True', u"'GoodForMeal: {'dessert"
False, 'latenight: False, 'lunch: True, 'dinner": True, 'breakfast: False, 'brunch':
True}™, u'HappyHour: True', u'HasTV: True', u"Music: {dj: False,
'background_music": False, 'no_music". False, 'karaoke" False, 'live". False,
'video": False, ‘jukebox’: False}", u'NoiselLevel: average', u'OutdoorSeating:

True', u'RestaurantsAttire: casual’, u'RestaurantsDelivery: False',
u'RestaurantsGoodForGroups: True', u'RestaurantsPriceRange2: 2,
u'RestaurantsReservations: True', u'RestaurantsTableService: True',

u'RestaurantsTakeOut: True', u'Smoking: no', u'WheelchairAccessible: True',

u'WiFi: free']","[u'Pubs’, u'Nightlife'’, u'Breweries', u'Bars', u'Gift Shops',
u'Gastropubs’, u'Food', u'Shopping’, u'Flowers & Gifts',
u'Restaurants']","[u'Monday 11:0-2:0', u'Tuesday 11:0-2:0', u'Wednesday
11:0-2:0', u'Thursday 11:0-2:0', u'Friday 11:0-2:30', u'Saturday 11:0-2:30',
u'Sunday 10:0-2:0"1",American,25,2,"OrderedDict([(u'aggregate_rating', u'3.6"),
(u'rating_text', u'Good"), (u'rating_color', u'9ACD32"), (u'votes', u'61")])",The Great
Dane Pub & Brewing Co.,876 Jupiter Drive,43.08536,-89.28035

ubEa6bXiMt6gOJ9xsUkbpEw,17503345,Capitol,Madison,53703.0,4.5,201,1,"[u'Al
cohol: full_bar', u"™Ambience: {'romantic. False, 'intimate': False, 'classy": True,
'hipster': False, 'divey": False, 'touristy: False, 'trendy": False, 'upscale": True,
'‘casual’: False}™, u'BYOB: False', u'BYOBCorkage: no', u'BikeParking: True',
u'BusinessAcceptsCreditCards: True', u""BusinessParking: {'garage" False,
'street’: True, 'validated: False, 'lot": False, 'valet': False}"™, u'Caters: False',
u'DogsAllowed: False', u'GoodForKids: False', u"'GoodForMeal: {'dessert': False,
'latenight”: False, 'lunch': False, 'dinner': True, 'breakfast: False, 'brunch'
False}", u'HasTV: False', u'NoiseLevel: quiet, u'OutdoorSeating: False',

u'RestaurantsAttire: dressy', u'RestaurantsCounterService: False',
u'RestaurantsDelivery: False', u'RestaurantsGoodForGroups: True',
u'RestaurantsPriceRange2: 4', u'RestaurantsReservations: True',
u'RestaurantsTableService: True', u'RestaurantsTakeOut: False',

u'WheelchairAccessible: True', u'WiFi: no'l","[u'Restaurants’, u'American
(New)']","[u'Monday 17:30-0:0', u'Tuesday 17:30-0:0', u'Wednesday 17:30-0:0',
u'Thursday 17:30-0:0', u'Friday 17:30-0:0', u'Saturday 17:0-0:0']","American,

European, French",70,4,"OrderedDict([(u'aggregate_rating', u'4.2"),
(u'rating_text’, u'Very Good'), (u'rating _color, u'5BA829'), (u'votes',
u'334"])",L'Etoile Restaurant, 1 South Pinckney

Street,43.0755377281,-89.3827955168

3. Python Code (merge_tables.py)

Usage: python merge_tables.py

import py_entitymatching as em
import match_magellan as mm
import pandas as pd

def get_all matches():

""" based on the train & test set, Logistic Regression is the winner '

A = em.read_csv_metadata('A.csv', key='business_id'")

B = em.read_csv_metadata('B.csv', key='id")

C = em.read_csv_metadata('C.csv', key='_id',1table=A, rtable=B,
fk_ltable="'ltable_business_id', fk_rtable='rtable_id")

match_f = mm.get_feats(A, B)

K = em.extract_feature_vecs(C, feature_table=match_f,

attrs_before= ['_id', 'ltable_business_id"',

'rtable_id'])

K = K.fillna(1)

attrs_to_exclude = ['_id', 'ltable business_id', 'rtable_id']

G = em.read_csv_metadata('G.csv', key='_id', ltable=A, rtable=B,
fk_ltable="'ltable_business_id', fk_rtable='rtable_id")

Gfvs = mm.train_fvs(G, match_f)

Gfvs = Gfvs.fillna(1)

#tem.to_csv_metadata(K, './K.csv')
K = em.read_csv_metadata('K.csv', key='_id', ltable=A, rtable=B,
fk_ltable="ltable business_id', fk_rtable='rtable _id')

lg = em.LogRegMatcher(name='LogReg', random_state=77)
lg.fit(table=Gfvs, exclude_attrs=attrs_to_exclude, target_attr='gold_labels"')

predictions = lg.predict(table=K, exclude_attrs=attrs_to_exclude,
append=True, target_attr='predicted', inplace=False)

matches = predictions.loc[predictions['predicted’'] == 1]
return matches

def matchesfvs_to_orig(matches):
""" output of get_all matches() is in feature vector form
merge with original csv files

Y = em.read_csv_metadata('yelp_restaurants.csv', key='business_id")

Z = em.read_csv_metadata('zomato_restaurants.csv', key='id')

matches_y = matches[['ltable_business_id', 'rtable_id']].merge(Y,
left_on="'1ltable_business_id', right_on="business_id")

matches_y z = matches_y.merge(Z, left_on='rtable_id', right_on='id')

em.to_csv_metadata(matches_y z, './matches.csv')

def cleanup(M):
Drop repetitive or unnecessary columns.
For Zomato, replace full addresses with short addresses:
the first part of an address before a comma,
since we already have city, state, zipcode attributes.
Take Yelp's city_x over Zomato's similar locality attribute.
Take Yelp's postal_code over Zomato's (which are missing some zipcodes).

+

drop repetitive columns

.pop('business_id")

.pop('id")

drop columns which offer no information
.pop('state') # are all 'WI'

.pop('type') # are all 'business'

.pop('R"') # same as zomato id

.pop(‘apikey")

.pop('url")

.pop('location') # already extracted to separate columns in jsontocsv.py
.pop('switch_to_order_menu') # all o

.pop('currency') # all $

.pop('offers') # all []

.pop('thumb")

.pop('photos_url")

.pop('menu_url")

.pop('featured_image"')

.pop('has_online_delivery') # all @
.pop('is_delivering now') # all o

.pop('deeplink")

.pop('has_table_booking') # all ©

.pop('events_url')

.pop('establishment_types') # all []

.pop('city_y') # from Zomato, all Madison
.pop('city_id"') # from Zomato, all Madison
.pop('country_id') # all 216 (probably U.S.)
locality_verbose is just locality + 'Madison’

#M['locality_verbose'] = M['locality_verbose'].str.extract('~(.+?),")
#M['locality_verbose'].equals(M['locality'])
M.pop('locality_verbose')

M['address_y'] = M['address_y'].str.extract('~(.+?),")
#M['city_x"'].value_counts()

#M['locality'].value_counts()

take yelp's city_x over zomato's more finer locality
M.pop('locality")

#M['comp_zips'] = M.postal_code == M.zipcode

take yelp's postal_code over zomato's zipcode
M.pop('zipcode')

HFETEZEE===Z=Z=2Z=2Z=2Z=2Z=2=2Z=22Z=2==2=2=2===%Hx==

rename for clarity

M = M.rename(columns={'ltable_business_id': 'yelp_id', 'rtable_id"':
'zomato_id', 'postal_code': 'zipcode', 'city_x': 'city'})

return M

None of the compute_* functions should perform side effects. See the docs for
pandas.DataFrame.apply() for more information.

def compute_name(row):

Chooses the name with the longer length.

if len(row['name_x']) < len(row['name_y']):
row['name'] = row["name_y']

else:
row['name'] = row["name_x"]

return row

def compute_address(row):

[}

Chooses the address with the longer length.

if len(row['address_x']) < len(row['address_y']):
row["address'] = row['address_y"']

else:
row["address'] = row['address_x"]

return row

def compute_latitude(row):

[

Computes the latitude as the average (arithmetic mean) of latitude_x and
and latitude_y. Assumes that none of the latitudes are 0.

row['latitude'] = (row['latitude_x'] + row['latitude_y']) / 2
return row

def compute_longitude(row):

[

Computes the longitude as the average (arithmetic mean) of longitude_x and
longitude_y. Assumes that none of the longitudes are 0.

row['longitude'] = (row['longitude_x'] + row['longitude_y']) / 2
return row

def main():
matchesfvs_to_orig(get_all _matches())

uncleanM = em.read_csv_metadata('./matches_cleaned.csv')

M = cleanup(uncleanM)

M["'name'] = pd.Series()

M = M.apply(compute_name, axis=1)
M.pop('name_x")

M.pop('name_y")

M['address'] = pd.Series()

M = M.apply(compute_address, axis=1)
M.pop('address_x")
M.pop('address_y"')

M['latitude'] = pd.Series()

M = M.apply(compute_latitude, axis=1)
M.pop('latitude_x")
M.pop('latitude_y")

M['longitude'] = pd.Series()

M = M.apply(compute_longitude, axis=1)
M.pop('longitude_x")
M.pop('longitude_y")

em.to_csv_metadata(M, './E.csv')

if _name__ == '_main__":
main()

